
U.C.S. coin counting system

User Manual

Rev. 1.00

Hopper CD + SV + iS3
coin counting system

User Manual

PAY ATTENTION:
DANGER!

MECHANICAL PARTS IN MOTION

1. General

Congratulations on the purchase of the U.C.S. counting system for massive mixed
coins, developed and produced by Alberici SpA. This system is designed in such a
way as to quickly check and count large amounts of coins.
It is equipped with iS2 or iS3 sorter, to separate the counted coins into 2 or 3
different directions (dispensing hoppers or coin boxes).
Rejected coins are ousted directly by the coin acceptor.
It get easily installed in Cross-Change machines, where it is necessary
to count and recycle large quantities of.

1.1 Operation

The U.C.S. massive coin counting unit can identify various currencies and coin denominations, poured in
as mixed heaps, provided that the diameter of such coin ranges between 18 ÷ 26.5 mm, and that their
thickness stands between 1.8 ÷ 2.6 mm.
The system consists of the following components, all of them working by the ccTalk protocol:
a. U.C.S. feeder hopper: receives the heap of coins to be counted, and starts one-by-one
delivery to the inlet of the SV fast coin acceptor.
b. SV (super high speed) cctalk coin validator, capable of processing and identifying up to
10 coins per second.

c. 2-way iS2 or 3-way iS3 coin sorter (optional): it communicates with the system via its Pulse
10p connector.

1.2 Safety

The U.C.S. system must be installed in machines equipped with devices apt to CUT power supply off.
Always power off before removing or installing the device .
The system contains moving mechanical parts: DO NOT INTRODUCE fingers or objects other than coins
while the device is operating, or when power is switched on.

2. Technical specs

3. Mechanical description

3.1 Dimensions

3.2 Installation

Fasten the polycarbonate base onto the support prepared in
the cabinet for the hopper of the UCS unit.

Position the hopper on the base, keeping the reservoir
towards the front the release tabs of the base,
and push it down.

Before connecting the power supply to the 10p socket
located at the rear side of the hopper, please read chapter 4.

To remove the hopper, disconnect the connection cable,
pull the release tab out and pull the hopper upwards.

For the guarantee to be valid Installation must be done in compliance with the instructions given in the
present section 3.2.

1 2 3

4. Electrical description

4.1 Power supply

Power supply to Hopper U.C.S. must be 24V d.c. . Leads cross section must be compatible with current
draw showed in section 2.

4.2 Pin-outs

The Hopper cctalk 10p connector is located in the rear side of the hopper slide base, beside the dip-switch
row for setting the serial address.
The cctalk communication between the machine host and the U.C.S. system runs through this 10p connector.

Connect to Ground (GND) all the plate terminals of the hopper.

4.3 Setting the serial address by Dip-Switches

If necessary, the serial address of the hopper can be modified via the Dip-Switch row. The three dip-switches
can be combined as follows, to set the needed address:

SW1 position SW2 position SW3 position Serial Address

OFF OFF OFF 3

ON OFF OFF 4

OFF ON OFF 5

ON ON OFF 6

OFF OFF ON 7

ON OFF ON 8

OFF ON ON 9

ON ON ON 10

The status of the dip-switches gets detected only at power up or at reset, therefore any setting will not have any
effect until after the unit is switched off and on again.

HOST
UNIT
PCB

Communication protocol of Alberici U.C.S. is implemented according to generic specification 4.4

5. Maintenance

Before any maintenance operation that requires disassembling the system, turn off the power and
disconnect the cable.
Watching from the coin insertion basket, check if debris or rubbish are laying at the bottom of the
dispenser belt, and remove them (if necessary, use a jet of compressed air). Their presence can obstruct
the output of the coins, hinder chain movement, spoil the components of the U.C.S. or alter its
performance.

It is good practice to periodically activate the automatic cleaning button : the hoper will start the belt
in the direction opposite to the standard rotation, thus forcing it to be cleaned by the built-in brush. Keep
the button pressed for as long as necessary. It is also useful to blow compressed air onto the slots for
draining debris and liquids (see the picture on page 4), to release any obstructions. Carry out the same
operation on the holes of the channel between the hopper outlet and the coin validator input.

The coins will get into the coin acceptor already abundantly treated clean; however, over time it is
possible to accumulate debris in the acceptor reading path. The reading path can be accessed by
opening the side flap door of the acceptor: remove the debris that have been deposited by blowing
compressed air, and then rub the walls with a soft clean cloth, lightly soaked in a cleaning solution for
glass and plastic surfaces.

CAUTION:

1) do not use alcohol, diluent, turpentine essence, acetone, petrol or other petroleum products, or containing citric acid.
2) the lenses of the sensors are made of transparent polymers, and must be cleaned with great caution so as not to
scratch them. Gently wipe several times, until the dirt is removed.

6. ccTalk protocol

ccTalk® communication protocol is the Money Controls (formally Coin Controls) serial communication protocol for low-speed
control networks. It was designed to allow the interconnection of various cash handling devices (Hopper, Card reader, Bill
validators, Coin selectors etc.), mostly in AWP and gaming Industry, but also in other devices that use those components.

ccTalk® is an open standard. All documentation is available at web site: www.cctalk.org.

1 Communication specifications

ccTalk serial communication is derivation of RS232 standard.

Low data rate NRZ (Non Return to Zero) asynchronous communication:
Baud rate 9600, 1 start bit, 8 data bits, no parity, 1 stop bit.
RS232 handshaking signals (RTS, CTS, DTR, DCD, DSR) are not supported. Message integrity is controlled by means of
checksum calculation.

1.1 Baud rate
The baud rate of 9600 was chosen as compromise between cost and speed. Timing tolerances is same as in RS232 protocol
and it should be less than 4%.

1.2 Voltage level
To reduce the costs of connections the “Level shifted “ version of RS232 is used. The idle state on serial connector is 5V,
and active state is 0V.
Mark state (idle) +5V nominal from 3.5V to 5V
Space state (active) 0V nominal from 0.0V to 1.0V

1.3 Connection
The connection of Hopper at network is achieved by means of 10 pole IDC connector compatible with standard ccTalk 2+2
(Two wires for power supply + two for GND connector). Connector is used for power supply and communication as well.

For schematics and connector lay-out see image and table below.

10p ccTalk

connector

pin-out

Fig. 1 - ccTalk connector lay-out

1.4 Message structure

Each communication sequence consists of two message packets.
Message packets for simple checksum case is structured as follows:

[Destination address]
[Nr. of data bytes]
[Source address]
[Header]
[Data 1]
...
[Data n]
[Checksum]

There is an exception of message structure when device answer to instruction 253 “Address poll” and 252 “Address clash”.
The answer consists of only one byte representing address delayed for time proportional to address value or random delay.

For CRC checksum case format is:
[Destination address] [Nr. of data bytes]
[CRC 16 LSB]
[Header] [Data 1]
...
[Data n]
[CRC 16 MSB]

1.4.1 Address
Address range is from address 0 to address 255. Address 0 is special case or so called “broadcast” address and address 1 is
default host address.
The recommendations for address value of different devices are presented in table below.

Device category Address Additional addr. Note

Coin Acceptor 2 11 - 17 Coin validator, selector, mech...

Payout 3 4 - 10 Hopper

Bill validator 40 41 - 47 Banknote reader

Card Reader 50 -

Display 60 Alphanumeric LC display

Keypad 70 -

Dongle 80 85 Safety equipment

Meter 90 Replacement for el.mec. counters

Power 100 Power supply

PIN Nr. Function

1 cc Talk Data

2 Not used

3 Not used

4 GND

5 Not used

6 Not used

7 +24 V

8 GND

9 Not used

10 +24 V

1.4.2 Number of data byte

Number of data byte in each transfer could be from 0 to 252. Value 0 means that there are no data bytes in the message,
and total length of message packet will be 5 bytes. Although theoretically it will be possible to send 255 bytes of data
because of some limitations in small micro controllers the number is limited to 252..

1.4.3 Command headers (Instructions)
Total amount of possible ccTalk command header is 255, with possibility to add sub-headers using headers 100, 101, 102
and 103.

Header 0 stands for ACK (acknowledge) replay of device to host. Header 5 stands for NAK (No acknowledge) replay of
device to host. Header 6 is BUSY replay of device to host.
In all three cases no data bytes are transferred. Use of ACK and NAK headers is explained separately for each specific
message transfer.
Commands are divided in to several groups according to application specifics:
- Basic general commands
- Additional general commands
- Commands for Coin acceptors
- Commands for Bill validators
- Commands for Payout

- MDCES commands

1.4.4 Data
There is no restrictions for data format use. Data could be BCD (Binary Coded Decimal)numbers, Hex numbers or ASCII
strings. Interpretation as well as format is specific to each header use, and will be explained in separate chapter.

1.4.5 Checksum
Message integrity during transfer is checked by use of simple zero checksum calculation. Simple checksum is made by 8
bit addition (modulus 256) of all the bytes in the message.
If message is received and the addition of all bytes are non-zero then an error has occurred3.

1.5 Timing specification

The timing requirements of ccTalk are not very critical but there are some recommendations.

1.5.1 Time between two bytes
When receiving bytes within a message packet, the communication software must wait up to 50 ms for next byte if it is
expected. If time out occurs, the software should reset all communication variables and get ready to receive next message.
The inter byte delay during transmission should be ideally less than 2 ms and not greater than 10 ms.

1.5.2 Time between command and replay
The time between command and reply is dependent on application specific for each command. Some commands return
data immediately, and maximum time delay should be within 10 ms.
Other commands that must activate actions in device may return reply after action is finished.

1.5.3 Start-up time
After the power-up sequence Hopper should be ready to accept and answer to a ccTalk message within less than 250 ms.
During such period all internal check-up and system settings must be done, and hopper should

1.6 Error handling

If slave device receive the message with bad checksum or missing data no further action is taken and receive buffer will be
cleared. Host software should decide to re-transmit message immediately or after a fixed amount of time. In case when
host receive message with error it has same options.

2. Hopper CD Command header set

Command header set, that host could use in communication with Hopper is given in table below.

Code / Hex. Command header Note

254 FE Simple poll Return ACK

253 FD Address poll MDCES support

252 FC Address clash MDCES support

246 F6 Request manufacturer id “Alberici”

245 F5 Request equipment category id “Payout”

244 F4 Request product code “HopperTwo ccTalk”

242 F2 Request serial number [Ser nr-L][Ser nr][Ser nr-H]

241 F1 Request software revision un.n pm.m.m

217 D9 Request payout high/low status Return empty/full status

210 D2 Modify sorter path Supported: as many directions as allowed by the Sorter (2, 3, or 5)

197 C5 Calculate ROM checksum [Mon][Prog][Data]

164 A4 Enable hopper Enable = 0xA5

163 A3 Test hopper Supported

134 86 Dispense hopper value Supported

133 85 Request hopper polling value Supported

132 84 Emergency stop value Supported

131 83 Request hopper coin value Supported

130 82 Request indexed hopper dispense count Supported

1 1 Reset device Software reset

Command headers are divided into 4 different groups:
- Common command headers
- Hopper command headers

- MDCES command headers

U.C.S. SYSTEM SPECIFIC COMMAND HEADERS

The components of the U.C.S. System interact as follows.
1) The machine host prompts the hopper for dispensing the coins it contains. The hopper starts paying coins out.
2) The machine host asks the coin acceptor to inform the denomination processed.
3) If the coin acceptor communicates any error, the cctalk automatic reject motor opens and closes the acceptor side flap.

Specific commands for the Hopper CD:

242 - Request serial number
164 - Enable hopper
167 - Dispense hopper coin

166 - Polling – request hopper status (aim being to understand if belt is rotating or not)
163 - Test hopper
172 - Stop

Specific commands for the SV coin acceptor:
231 - Enable coins (modify inhibit status)
210 - (Optional) Modify sorter path
229 - Polling (to identify the accepted denomination or whether the acceptor is in error)

2.1 Commands for Hopper CD:

Default address = 03

2.1.1 Command header 242 [hexF2], Request serial number
Hopper answer with three-byte serial number.
Message format is:
Host sends: [Dir] [00] [01] [F2] [Chk] Hopper answer: [01] [03] [Dir] [00] [Serial 1 -LSB] [Serial 2]
[Serial 3 -MSB] [Chk] Serial 1 – first data byte sent is LSB of serial number.
Example of message packets for Hopper (address 3) and serial number 1-2-34567, hex [BC][61][4E] is:
Host sends: [02] [00] [01] [F2] [0A] Hopper answer: [01]
[03] [03] [00] [4E][61][BC] [8E]

2.1.2 Command header 164 [hexA4], Enable Hopper
This command enable hopper before paying out coin.
Command format is:
Host sends: [Dir][01][01] [A4] [d1][Chk]
Hopper answer: [01] [00] [Dir] [00] [Chk] ACK
d1 must be Hex [A5] in order to enable hopper.
Example of message packets for Hopper (address 3) is
Host sends: [03][01][01] [A4] [A5][B2]
Hopper answer: [01] [00] [03] [00] [FC] ACK

2.1.3 Command header 167 [hexA7], Dispense hopper coin
This command dispenses coin from the hopper. Maximum number of coin hopper can dispense with a single command is 255. After
Dispense hopper coin command, hopper need to be enabled, else dispense action is not performed. Alberici hopper answers
correctly to two formats of dispense coin command.

First message format is
Host sends: [Dir] [04] [01] [A7] [sn1] [sn2] [sn3] [N°Coin][Ch k] Hopper answer:
[01] [00] [Dir] [00] [Chk] ACK or NAK
Example of first type of message packets for Hopper (address 3) is
Host sends: [03] [04] [01] [A7] [12] [34] [56] [64][Chk] Hopper
answer: [01] [00] [03] [05] [F7] NAK
Command tries to pay 100 coins (64H) but serial number sent to hopper isn’t correct.

Second command format is
Host sends: [Dir][0A][01] [A7] [00] [00] [00] [00] [00] [00] [00] [00] [00] [N°Coin][Chk] Hopper
answer: [01] [00] [Dir] [00] [Chk] ACK or NAK

Example of second type of message packets for Hopper (address 3) is
Host sends: [03][09][01] [A7] [00] [00] [00] [00] [00] [00] [00] [00] [01][4B]
Hopper answers: [01] [00] [03] [00] [FC] ACK
One token is paid

2.1.4 a Command header 166 [hexA6], Request hopper status
This command returns four counters that explain the status of payment.
Host sends: [03][09][01] [A7] [00] [00] [00] [00] [00] [00] [00] [00] [01][4B]
Hopper answer: [01] [00] [03] [00] [FC] ACK
One token is paid.

2.1.4 b Command header 166 [hexA6], Request hopper status
polling only to understand if it is moving – does not check the paid-out coins)
This command returns four counters that explain the status of payment.
Host sends: [03][09][01] [A7] [00] [00] [00] [00] [00] [00] [00] [00] [01][4B]
Hopper answer: [01] [00] [03] [00] [FC] ACK
One token is paid.
These four bytes are:
1. Event Counter that show the number of good dispense events since last reset.
2. Payout coins remaining that show how many coins are still to pay.
3. Last Payout: coins paid, shows how many coins paid out since last dispensing command (increments with each coin dispensed)
4. Last Payout: coins unpaid, that show how many coins remained unpaid during last payout.

First two counters are saved in Ram, while last two are saved in eeprom. Default value of Event Counter and Payout coins remaining
is 0, at reset and after Emergency stop command. If a reset occurs, Event Counter and Payout coins remaining values are saved in
two Last Payout counters, in eeprom. Thus, after reset or power-off, hopper can return coin paid and unpaid during last payout.
Command format is
Host sends: [Dir] [00] [01] [A6] [Chk]
Hopper answer: [01] [04] [Dir] [00] [d1] [d2] [d3] [d4] [Chk]
Example of message packets for Hopper (address 3) is
Host sends: [03] [00] [01] [A6] [56]
Hopper answer: [01] [04] [03] [00] [00] [00] [07] [03] [EE]
In this example hopper is not perform a payout. During last payout the hopper was power off
while paying. It had to pay 10 coin, but only 7 was really paid. Three remained.
Another example of message packets for Hopper (address 3) is
Host sends: [03] [00] [01] [A6] [56]
Hopper answer: [01] [04] [03] [00] [0B] [09] [02] [00] [E2]
In this example hopper is performing a payout. It’s the 11th payout before last reset. A coin is
paid (9 are remaining) and during last payout 2 coin was paid.

2.1.5 Command header 163 [hexA3], Test Hopper
This command is used to test hopper hardware. It reports back a bit mask that shows various hopper errors. Bit meaning is
shown here :
BIT0 – Absolute maximum current exceeded BIT1 –
Payout timeout occurred BIT2 – Motor reverse during last payout to clear a jam BIT3 – Opto fraud attempt, path blocked during
idle BIT4 – Opto fraud attempt, short circuit during idle BIT5 – Opto blocked permanently during payout BIT6 – Power up
detected
BIT7 – Payout disabled Command format is
Host sends: [Dir][00][01] [A3][Chk]
Hopper answer: [01] [00] [Dir] [00] [d1] [d2] [Chk] Example of message packets for Hopper (address 3) is Host sends:
[03][00][01] [A3][59]
Hopper answer: [01] [02] [03] [00] [C0] [00] [3A]
The data byte Hex[60] means that Opto are blocked permanently during payout and power up was detected.

2.1.6 Command header 172 [hexAC], Emergency stop.
This command immediately stops the payout sequence and reports back the number of coins which the hopper failed to pay
out. After Emergency stop command hopper is disabled. To perform new payout sequence, hopper must be re-enabled.
Message format is:
Host sends: [Dir] [00] [01] [AC] [Chk]
Hopper answer: [01] [01] [Dir] [00] [d1] [Chk]

Example of message packets for Hopper (address 3) is

Host sends: [03] [00] [01] [AC] [50]
Hopper answer: [01] [01] [03] [01] [01] [FA]
Data byte Hex[01] mean that hopper remain one coin to be paid.

2.2 Commands for the coin acceptor

Default address = 02

2.2.1 Command 231 [hexE7], Modify inhibit status

With this command host can inhibit the acceptance of some or all coins.
Acceptance or inhibition is set with a two-byte mask sent by host.
Bits from 0 to 15 determinate coin positions from 1 to 1622.
Number of coin channels in new ALBERICI coin selectors AL55/66 is same as number of position (16). Message format is:
Host sends: [Dir] [02] [01] [E7] [LSB Mask.] [MSB Mask.] [Chk]
Coin s. respond: [01] [00] [Dir] [00] [Chk] ACK
Example of message string to enable all position for coin selector(address 2) is:
Host sends: [02] [02] [01] [E7] [FF] [FF] [16]

Coin s. respond: [01] [00] [02] [00] [FD] ACK
After that all programmed coins will be enabled. Command has no effect on coin position that are not programmed. Initially coin
channels could be programmed with acceptance enabled or disabled.

2.2.2 Command 210 [hexD2], Modify sorter paths (optional)

With this command the host can change direction of coins in sorter if sorter is supported. Host sends two bytes of data to
select the coin position and sorter path (direction of exit). First byte of data (LSB) represents coin position and second byte of
data points to sorter path. ALBERICI coin selectors has support for most existing sorters that have direct drive of coils from coin
selector with open collector transistor. Most common
are 3- or 4-way sorter with two coils, but recently 5-way sorters with 3 coils are in use. Message format is: Host sends: [Dir]
[02] [01] [D2] [Coin pos.] [Sort.Path] [Chk]
Coin s. respond: [01] [00] [Dir] [00] [Chk] ACK if sorter path is possible to set
Coin s. respond: [01] [00] [Dir] [05] [Chk] NAK if coin selector does not support setting
Initially all coin position has sorter paths set to direction 1 hex[01]. If sorter is not supported, sorter path is set initially
to 0 hex[00]!
If host sends command to modify sorter path that is not existent or for coin not programmed, the coin selector will respond with
message NAK. Example of message string for coin selector (address 2) re-direction of coin pos. 1 into path 2 is:
Host sends: [02] [02] [01] [D2] [01] [02] [26]
Coin s. respond: [01] [00] [02] [00] [FD] ACK
After acceptance of command, accepted coins with position 1 will exit in direction 2 of the sorter. The path or direction 1 is
usually one without activation of any coil.
Different coil activation schematics is possible to program by setting the sorter type.

2.2.3 Command 229 [hexE5], Read buffered credit or error codes

This is the most important command used by host to detect import of coins in to a machine and to report eventual errors. As
previously mentioned, coin selectors store all events in volatile memory called credit buffer. Buffer has 5 level and use two
bytes for each event. In first byte coin position or coin value1 is stored.
The second byte point to a sorter path or indicate error code.
If during coin acceptance any error occurs, stored value of coin position is 0, hex [00].
Error codes supported in ALBERICI coin selectors are shown in Table 4 next page.

Code d. Code h. Error Coin rejected

0 00 Null event No

1 01 Reject coin (not recognized) Yes

2 02 Inhibited coin (master inhibit) Yes

3 03 Multiple window (fraud or similar coin) Yes

1 If coin selector use CVF (Coin Value Form)

The board reads the address dip-switches only after power-up or reset. Therefore any change of address made by

means of the dip-switch row during normal operation will have no effect.

Table 4 Acceptance error codes

Coin selectors also use one eight-bit counter2 that is incremented each time a new coin is detected. At the same time data
in coin credit buffer are shifted two positions to the right. When counter reaches the value of 255 it toggle to a value 1 and
continue to increment on each event. Event counter is set to value “0” after each power-up or acceptance of reset
command. The first two byte (LSB) in coin credit buffer always contain the data of last event. Host software must read
event counter and coin credit buffer data in period short enough to prevent the loss of coin data3. Message format is:
Host sends: [Dir] [00] [00] [E5] [Chk]

 Coin sorter responds: [01][0B] [Dir] [00] [Ev.cnt.][coin code 1][dir/err] [coin code 2][dir/err] . . . [coin code 5][dir/err] [Chk]
Examples of message string for coin selector (address 2) after coin insertions:
Host sends: [02] [00] [00] [E5] [18] Polling minimum each 500 ms
Coin sorter respond: [01] [0B] [02] [00] [00][00][00][00][00][00][00][00][00][00][00] [F2]
The respond after power-up or reset

Coin sorter respond: [01] [0B] [02] [00] [01][01][02][00][00][00][00][00][00][00][00] [EE]
First event, coin position 1, sorter path 2 accepted
Coin sorter respond: [01] [0B] [02] [00] [02][02][01][01][02][00][00][00][00][00][00] [EA]

Second event, coin position 2, sorter path 1 accepted
Coin sorter respond: [01] [0B] [02] [00] [03][00][02][02][01][01][02][00][00][00][00] [E7]
Third event, coin rejected due to master inhibit active

Coin sorter respond: [01] [0B] [02] [00] [04][00][83][00][02][02][01][01][02][00][00] [63]
Forth event, coin position 4 inhibited and rejected
From example we can notice shifting of data in the coin credit and error buffer and increment of event counter.

2.3 Commands referring to the generic Algorithm:

Read the the serial number of the U.C.S. (very important; otherwise it is possible to make it dispense)
[242] Enable the U.C.S. hopper (very important; otherwise it is possible to make it dispense)
[164] Enable the coins accepted by the coin selector (otherwise it will reject all coins)
Set the separator sorting paths for the accepted coins
[210] Start coin dispensing by U.C.S. hopper (request 250 coins payout) [134

Cyclically (at least every 500ms, ideally every 150ms), it is recommended to:
- check the dispensing status of the hopper [166]
- check the coins accepted by the coin acceptor [229]

It is possible to exit the counting cycle under the following conditions:
- when the requested number of coins has been dispensed, it may be necessary to command a further dispensing cycle, because
the number of coins contained in the hopper could be larger than the maximum number we can ask for by each command (see
command 166);
- the hopper has stopped without reaching the required number of coins. In this case it must be investigated whether the hopper
operation has exceeded time-out (empty tank)limit or because of an error. To determine which cause, make use of the Test hopper
command (see command 163);
- the coin validator has answered an error code (see command 229. In this case, send the hopper Stop command (command 172).
Should any error occur, the coin reject mechanism can be activated (command FF-11).

IMPORTANT: the coins accepted by the system must be the same ones confirmed by the coin acceptor as per command 229.

3.0 Setting the Hopper Address via the DIP-SWITCH row in the 10p pcb

The default address of Alberici hoppers (03) can be changed by setting the onboard switches. The following table shows the

possible Dip-Switch combinations that can be used to set the Hopper address.

Sw 3 Sw 2 Sw 1 Address

Off Off Off 3

Off Off On 4

Off On Off 5

Off On On 6

On Off Off 7

On Off On 8

On On Off 9

On On On 10

NOTA: La Alberici S.p.A. si riserva il diritto di apportare modifiche alle specifiche tecniche dell’apparecchiatura descritta

in qualunque momento e senza preavviso, nell’ambito del perseguimento del miglioramento continuo del proprio prodotto.

